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Summary 

Donald W. Patten modeled flybys of Mars as a fIxed sequence that alternated spring and fall, 
spaced 108 years apart. He sequenced flybys from 701 to 1404 BCE using historical records. 
Flybys altemated between the night of March 20-21 on odd years, and during the day of October 
24 on even years. Associated with most flybys was a catastrophic impact with a satellite of Mars. 
An impact would incinerate the land beneath or generate a tidal wave if it hit the sea Vo1canoes 
would often erupt from the shock and cause a severe drop in global temperature. Impacts might 
also trigger a pole shift, usually a few degrees, but sometimes a complete pole reversal. 

Mars had a two-year elliptical orbit in 6: 1 resonance with Jupiter. At its greatest extent, it passed 
through the asteroid belt and acquired more satellites . The plane of Mars' orbit was not stationary 
but oscillated with aperiod of 108 years, pulled by Jupiter. When the planes of Mars and Earth 
were roughly congruent, a flyby occurred. The data suggests the plane was somewhat tilted, so 
the time between spring and fall flybys was not equal. 

This paper extends Patten's methodology to March 7137 BC by recognizing that the 108-year 
interval was not constant but occasionally increased in increments of fOUf years. Two important 
milestones are March 3161 BC, the Biblical Flood, and March 3761 BC, the start of the Hebrew 
calendar. Dates were obtained by correlating spikes of ammonium ions (NH4+) from 
Greenland's GISP2 ice core; aspike of ammonium occurs within a couple of months of an 
impacting object in the northern hemisphere. On average, strikes occurred just as frequently fOUf 
years before or after the dosest flyby as Mars reloaded its family of satellites from the Asteroid 
Belt. Mars remained lethal at least ten years from the nearest flyby. 

Greenland does not particularly record strikes in the southero hemisphere, so some fraction of 
strikes does not appear. In addition, something about the ice frequently disrupted the 
measurement process whenever there was a strike. 

Background 

Patten researched dates of Mars flybys from 701 to 1404 BC (Table 1) (Patten 1990, 1996, 
1999). To this list add 2300 BC, end of the Bronze Age; 3761 BC, start of the Hebrew calendar; 
and 3161 Be, the Noachian Flood 600 years later. 

Page 1 



mtlerclept "u~..,u""",, ­

108 Samuel 1.6 108 
1 108 
1296 108 
1404 108 

1 

How pole 

by Patten was the discovery that a pole shift usually accompanied a 
r!PO'1"p.""" to a camplete revers al. The mechanism a pole shift was 

of seas the land 
Irvroscone. the only mass that matters is the 

If an object 3 km 
tan2ent. it will create a momentary u.u~:''''''<U 

has ChaDf;?;e:a. 

pole star 

len,fl:1nens the slightly, somewhat LJUllUV Soedicato (2004) 

of ammonium 

the would cool sutlstantüllll) vOlcamc eruptions, which 
or next summer if a fall strike. summer ifa 

full 

with 
fust and only time 

intercept one or more of these orbiting salellites which 
~"""UF>~, often with a pole cu:ded far 

to five passes or flyby. 
Venus and Moon did also. 

Page 2 



Fi ot both Earth and the asteroid beft. 

Asteroid Belt 

, Mars 

-I­

I 

I 
Oscillation 

Spring f1yby 

Impact record in ice cores and tree rings 

The consequences of these impacts left a record in the GreenJand ice sbeet. 

Mike Baillie (2008) discovered a correlation between a massive spike of ammonium ion NH4+ 
and a comet strike. It is not the comet per se that creates the ions, but rather the consequence of 
an extraterrestrial object of any kind striking Earth. Thi.s is fortuitous, because Mars and its 
satellites are not comets. 

Paul A. Mayewski and Gregory A. Zielinski carefully measured a suite of ions in Greenland's 
GISP2 ice core, while otbers correlated snow depth witb age by counting snow layers between 
volcanic explosions. They measured the concentration of ions of ammonium, cblorine, sodium 
and nitrous oxide taken from a me1ted section of the ice core that typically spanned two or three 
years. By assuming the ammonium is not spread evenly but concentrated in a single year, an 
individual measurement can often double or tripIe in magnitude. Of these four, ammonium is the 
most sensitive i.ndicator with a high peak above ambient background. Two ions, sodium and 
cblorine, peak 60% of tbe time, perhaps indicating an ocean strike. 

California bristlecone pines and Irisb bog oaks often exhibit a narrow growth ring after a strike, 
caused by a summer of severe cold as volcanoes triggered by the impact block the beat of the sun 
with their emissions. Trees add summer growth rings omy after tbeir roots tbaw. Mike Baillie 
and David Brown kindly suppli.ed a 7000-year record of Irish bog oak tree rings (Baillie 1988). 
Donald Graybill began the process of assembling an 8000-year record of Bristlecone pines from 
separate locations. However, I had to not use their data because there were other ways for 
volcanoes to erupt without being triggered by a strike. 

Variable interval between flybys 

An examination of ammonium spikes sbows that the 108-year cyc1e ended in October 1404 BC, 
the day the sun stood still. However, it continued back in time on a 112-year cyc1e. This in turn 
ended in 2465 BC, but continued back on a 116-year cyc1e. This step-pattern continues until the 
strikes end in 7137 BC (Figure 2). 
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A consequence of tbis step pattern is that the interval between spring and fall flybys varies 
considerably (Figure 3)_ 
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Distribution of impacts around flyby year 

To my surprise. tbe impacts from Mars' flybys do not have a normal distribution around tbe year 
of dosest approach_ Instead they exhibit three lobes spaced four years apart, each witb anormal 
distribution, plus a hint of another peak eight years out (Figure 3). Upon reflection, these are 
caused by Mars reloading its family of satellites whenever it passed tbrough the Asteroid Belt. 
Because the plane of Mars was tilted in relation to that of tbe Asteroid Belt as weIl as tbat of 
Earth, it apparently passed through twice while going in one direction, spaced fOUT years apart. 
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The total number of impacts is perhaps twice as large for two reasons: multiple impacts during a 
flyby are recorded only once in the ice core, and impacts in the southern hemisphere do not seem 
to appear at al1. 

Frequency of impacts 

A plot of frequency of impacts over the life of Mars shows a few episodes of above average 
number of impacts. Two of these dates are significant: 3761 Be, the start of the Hebrew 
calendar, and 756 Be, just prior to the unique flyby of 701 Be. Because Mars kept replenishing 
satellites every time it went through the Asteroid Belt, there is no drop-off in number of strikes 
with time. 
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Origin of Mars 

The birth of Mars as a planet occurred somewhat earlier than 6900 Be (Spedicato 2012). Mars 
had been a satellite of Earth that orbited three times a year, which accounts for early calendars 
having only three months. It was much farther away than Moon, so that reflected light from the 
Sun was much dimmer than Moonlight. The new Moon was so bright that it allowed activities to 
be held at night. Spedicato modeled the capture of Moon from a large passing planet Nibiru and 
the simultaneous release of Mars as a four-body problem. Nibiru eventually crashed into Jupiter 
around 6900 Be, when it fonned the red spot and possibly ejected its core as Venus on the 
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Appendix 1: Known Catastrophe Dates 

701 BC, March 
The flyover occurred on the night of the Passover, Mar 20-21, during the 14th year of the 
reign of King Hezekiah, in 701 BC (Edwin Thiele) 

864 BC, October 
The Elijah Catastrophe was in the middle of King Ahab's 21-year reign (874/873-853), thus 
863 BC (Patten). 

972 BC, October, 2 years early 
King David preceded King Solomon (971-931). The catastrophe occurred in the next to last 
year of King David's reign, thus 972 Be. (Edwin Thiele) Descriptions in n Samuel22 and 
24, I ChronicIes 21, Psalm 18. 

1404 BC, October 
The day the sun stood still (Joshua) occurred in 1403 Be. Start with Exodus in 1447 Be. 
They were 40 years in the wilderness (1407), 1 year in conquest of Gilead (1406), 1 year for 
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God created Adam and Eve. (Torah) 
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Northern hemisphere strikes from flybys of Mars 
Julian calendar, years BeE with year O. Outlined cells lack GISP2 data. Known dates in sepia. Strikes in bold. 

Flyby Interval Years before or after Mars flyby Notes 
Year Mo Yr -10 -8 -6 -4 -2 0 2 · 4 6 8 10 
7207.8 Oe! 
7136.3 Mar 7126.3 7128.3 7130.3 7136.3 

7071 .8 0c1 136 7061.8 7071.8 

7000.3 Mar 136 6996.3 7004.3 

6935.80c! 136 1 6925.8 6929.8 6933.8 6937.8 6945.8 

6864.3 Mar 136 6854.3 6858.3 6862.3 6864.3 6868.3 6872.3 

6799.8 0c1 136 6799.8 6801.8 6803.8 

6728.3 Mar 136 6728.3 6732.3 
6663.8 Oe! 136 6653.8 6659.8 6661.8 6663.8 6667.8 6671.8 

6592.3 Mar 136 6584.3 6586.2 6588.3 6590.3 6596.3 6602.3 
6527.8 0c1 136 6519.8 6525.8 6227.8 6531.8 6237.8 
6456.3 Mar 136 6448.3 6454.3 6456.3 6458.3 6462.3 6466.3 
6391 .8 0c1 136 6381.8 6389.8 6391 .8 6393.8 6395.8 

6320.3 Mar 136 6314.3 6316.3 6322.3 6326.3 
6259.8 Oe! 1132 6249.8 6255.8 6257.8 6259.8 6263.8 6267.8 6269.8 , 
6188.3 Mar 132 1 1 6188.3 6198.3 
6127.8 Oe! 132 6123.8 6129.8 6135.8 
6056.3 Mar 132 6052.3 6058.3 6060.2 
5995.8 Oe! 132 5997.8 
5924.3 Mar 132 5916.3 5920.3 1 1 5928.3 
5863.8 0c1 132 5859.8 5861.8 5873.8 
5792.3 Mar 132 5786.3 5790.2 5792 
5731.8 Oe! 132 5729.8 5735.8 5739.8 
5660.3 Mar 132 5652.3 5656.3 5660.3 
5599.8 0c1 132 5589.8 5591.8 5595.8 5607.8 5609.8 
5528.3 Mar 132 5532.3 
5467.80c! 132 5457.8 5463.8 5467.8 
5400.3 Mar 128 5396.3 5398.3 5404.3 5406.3 5408.3 5410.3 
5339.8 0c1 128 5331.8 1 I 5345.8 5349.8 
5272.3 Mar 128 5268.3 5270.3 5278.3 5280.3 
5211.8 0c1 128 5201.8 5203.8 5205.8 5209.8 5211.8 5215.8 5217.8 
5144.3 Mar 128 I 5134.611 I 1 I I I 1 1 
5083.8 0c1 128 5083.8 
5016.3 Mar 128 I 5012.3 1 5022.3 5024.3 

I 4955.80ct 128 1 4957.81 1 I 
4888.3 Mar 128 4882.3 1 I 
4827.8 Oe! 128 4823.8 
4760.3 Mar 128 4754.3 4756.3 4760.3 1 4766.3 

14709.84699.8 Oe! 128 4695.8 4699.8 4703.8 4705.81 
4632.3 Mar 128 4642.3 
4571.8 0c1 1,28 4561.8 

14504.3 Mar 128 I, I 

4447.8 Oet 124 I 4447.81 1 4451.8 4453.8 L 
4380.3 Mar 124 4370.3 4372.3 4374.3 4376.3 4384.3 4388.3 4390.3 
4323.8 Oe! 124 4315.8 
4256.3 Mar 124 4248.3 4256.3 4260.3 4262.3 4264.3 4266.3 
4199.8 Oe! 124 4203.8 4205.8 
4132.3 Mar 124 4138.3 
4075.8 0c1 124 4067.8 4071.8 
4008.3 Mar 124 3998.3 4004.3 4008.3 4012.3 
3951.8 Oet 124 3941.8 3945.8 3947.8 3951.8 3959.8 3952 Bede's cal 
3884.3 Mar 124 3874.3 3878.3 3892.3 3894.3 
3827.8 Oe! 124 3821.8 3823.8 3825.8 3825.8 I I I 
3760.3 Mar 124 3752.3 3754.3 3756.3 3760.3 3762.3 3764.3 3768.3 3770.3 3761 Hebrew cal 
3703.80ct 124 3695.8 3699.8 3703.8 



Northern hemisphere strikes from flybys of Mars 
Julian ealendar•.years BCE with year o. Outlined eells lack GISP2 data. Known dates in sepia Strikes in bold. 

Flyby Interval' Vears before or after Mars flyby Notes 

I 

Vear Mo Vr I -10 -8 -6 -4 -2 0 2 4 6 8 10 
3640.3 Mar 120 11 3640.3 3646.3 

3583.8 Oct 120 
3520.3 Mar 120 3512.3 3520.3 3528.3 

3463.8 Oct 120 3459.8 
3400.3 Mar 120 3392.3 3396.3 

3343.8 Oct 120 3337.8 3343.8 3351.8 3353.8 

3280.3 Mar 120 3270.3 

3223.8 Oct 120 3213.8 3227.8 

3160.3 Mar 120 1 3160.31 3162.3 3161 world flood 

3103.8 Oct 120 3093.8 3095.8 3107.8 3109.8 

3044.3 Mar 116 3038.3 3042.3 3044.2 3046.3 3050.3 3052.3 3054.3 

2987.8 Oct 116 I 2989.8 2995.8 2997.8 

2928.3 Mar 116 1 2926.31 1 1 1 
2871.8 Oct 116 11 1 1 1 1 
2812.3 Mar 116 2816.3 2820.3 2817 end Akkad. 

2755.8 Oct 116 2749.8 2751.81 1 2760 end Old King 

2696.3 Mar 11 6 2692.3 2704.3 

2639.8 Oct 116 2631.8 2633.8 2635.8 2639.8 2643.8 2645.8 2647.8 

2580.3 Mar 116 2570.3 2578.3 2584.3 2585 end Kish 
2523.8 Oct 116 2513.8 2315.8 1 1 1 1 J I 1 
2464.3 Mar 116 2460.3 ~ 2466.3 2468.3 2470.3 2474.3 
2411.8 Oct 112 I 2405.81 2407.8 2419.8 

2352.3 Mar 112 2346.3 2356.3 2358.3 2357 China beg 
2299.8 Oct 112 I 2293.81 2297.811 2299.81 1 1 2300 end Bronze Age 
2240.3 Mar 112 2236.3 2240.3 2242.3 2248.3 2250.3 
2187.80et 112 

2118.31 
1 2195.7 

2128.3 Mar 112 I 2124.3 2126.3 1 1 1 1 
2075.8 Oct 112 2065.8 2071.8 2075.8 1 2085.8 
2016.3 Mar 112 2010.31 1 1 2022.3 2026.3 

I 
1963.8 Oct 112 1959.8 1 1 1 1 1 
1904.3 Mar 112 1 11 1 1 1 1908.3 
1851.8 Oct 112 1853.81 1 1861.8 
1792.3 Mar 112 1 1 1 
1739.80et 112 1735.8 1743.8 1745.8 1749.8 
1680.3 Mar 112 1674.3 1680.3 1684.3 1686.3 
1627.8 Oct 112 1627.8 1628 Santorini 
1568.3 Mar 112 1558.3 1566.3 1568.3 1567 end 13th dynt 
1515.8 Oct 1121 1509.81 15111.81 1513.8 1517.8 1519.8 
1456.3 Mar 112 1446.3 1466.3 1447 Exodus 
1403.80et 112 1393.8 1399.8 1403.8 1404 Joshua long day 
1348.3 Mar 108 1340.3 1344.3 1352.3 

1295.8 Oct 108 1287.8 1291.8 1295.8 1299.8 1305.8 1296 end 18th dyn 
1240.3 Mar 108 1240.3 Gideon 
1187.8 Oct 108 1181.8 1183.8 1193.8 1197.8 

1132.3 Mar 108 
1079.8 Oct 108 1071.8 1079.8 1083.8 1089.8 1080 Samuel 
1024.3 Mar 108 1014.3 1020.3 1024.3 1026.3 1028.3 1030.3 

971.8 Oct 108 966.5 971.8 975.8 979.8 981.8 972 David-Gad 
916.3 Mar 108 908.3 910.3 914.3 918.3 924.3 

863.8 Oct 108 855.8 859.8 861.8 863.8 1 1 1 871.8 864 Elijah-Homer 
808.3 Mar 108 810.3 816.3 818.3 
755.8 Oct 108 745.8 747.8 749.8 751.8 755.8 757.8 759.8 761.8 763.8 765.8 756 Jonah-Amos 
700.3 Mar 108 700.3 706.3 708.3 701 Isaiah-Hesoid 


